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Abstract. Using the eigenvalue definition of binomial states we construct new intermediate
number–coherent states which reduce to number and coherent states in two different limits. We
reveal the connection of these intermediate states with photon-added coherent states and investigate
their non-classical properties and quasiprobability distributions in detail. It is of interest to note
that these new states, which interpolate between coherent states and number states, neither of
which exhibit squeezing, are nevertheless squeezed states. A scheme to produce these states is
proposed. We also study the interaction of these states with atomic systems in the framework of the
two-photon Jaynes–Cummings model, and describe the response of the atomic system as it varies
between the pure Rabi oscillation and the collapse–revival mode and investigate field observables
such as photon number distribution, entropy and theQ-function.

1. Introduction

Since Stoler, Saleh and Teich proposed the binomial states (BS) in 1985 [1], so-called
intermediatestates which interpolate between some fundamental states such as number states,
coherent and squeezed states and phase states have attracted much attention [2]. The BS are
finite linear combinations of number states

|η,M〉 =
M∑
n=0

[(
M

n

)
ηn(1− η)M−n

]1/2

|n〉 (1.1)

whereM is a non-negative integer,η is a real probability (0< η < 1) and|n〉 is a number
state of the radiation field. The photon number distribution is clearly a binomial distribution,
whence the namebinomial state. The BS are intermediate number–coherent states in the sense
that they reduce to number and coherent states in different limits

|η,M〉 −→


|M〉 η→ 1

|0〉 η→ 0

|α〉 η→ 0 M →∞ ηM = α2.

(1.2)

The BS also admit an eigenvalue definition [3](√
ηN +

√
1− η√M −Na

)
|η,M〉 = √ηM|η,M〉 (1.3)

† On leave of absence from the Institute of Theoretical Physics, Northeast Normal University, Changchun 130024,
People’s Republic of China.
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wherea, a† andN are the annihilation, creation and the number operators, respectively. The
algebra involved is thesu(2) algebra (Holstein–Primakoff realization [4])

J + = √M −Na J− = a†
√
M −N J 3 = M

2
−N (1.4)

and in the present case the coherent state limit is essentially the contraction ofsu(2) to the
Heisenberg–Weyl algebra generated bya†, a and 1.

Since number and coherent states are eigenstates of the number operatorN and the
annihilation operatora, respectively, it would seem more natural that, to define states
interpolating between number and coherent states, we consider the eigenvalue equation of
a linear combination ofN anda itself (notJ +), namely,(√

ηN +
√

1− ηa
)
‖η, β〉 = β‖η, β〉. (1.5)

Here 0< η < 1 as before andβ is an eigenvalue which will be determined not only from the
eigenvalue equation (1.5) but also by aphysical requirement(see section 2).

In this paper we study the states‖η, β〉 and their various properties. We find that for
β = √ηM (M a non-negative integer), the solutions to equation (1.5) are indeed intermediate
states which interpolate between number and coherent states. We also find that these states
are closely related to the photon-added coherent states proposed by Agarwal and Tara [5].
The properties of this new state, such as their sub-Poissonian statistics, antibunching effects
and squeezing effects, as well as their quasiprobability distributions (theQ- and Wigner
functions), are studied in detail. Although coherent and number states are not squeezed,
the new interpolating states are squeezed, and exhibit highly nonclassical behaviour. We also
propose a scheme to produce these intermediate states in a cavity.

The intermediate number–coherent states are of particular interest in their interaction
with atomic systems. In the context of the Jaynes–Cummings (JC) model, atomic population
inversion exhibits two completely different phenomena: Rabi oscillation when the field is
initially prepared in a number state; and periodic collapse and revival when the field is initially
prepared in a coherent state. We naturally expect that the states proposed in this paper will
present phenomena intermediate between Rabi oscillation and periodic collapse–revival, given
that the initial state of the field is in an intermediate state. In section 6 we study the interaction
of the states with the atomic systems based on the two-photon JC model and we indeed observe
this intermediate behaviour. We also give an analytic derivation of the approximate photon
number distribution of the field and find it exhibits strong oscillation atτ = π/4, 3π/4 (τ
is the scaled time). These phenomena are explained physically in terms of the entropy and
Q-function of the field.

2. New intermediate number–coherent states

In this section we solve the eigenvalue equation (1.5), discuss the relation of the states (1.5) to
photon-added coherent states and study the limit to number and coherent states.

2.1. Solutions

Expanding the state‖η, β〉 in number states

‖η, β〉 =
∞∑
n=0

Cn|n〉 (2.1)
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inserting it into equation (1.5) and comparing the two sides of the equation, we find the solution
of the eigenvalue equation (1.5):

‖η, β〉 = C0

∞∑
n=0

[β −√η(n− 1)][β −√η(n− 2)] . . . β

(
√

1− η)n√n!
|n〉 (2.2)

whereC0 is the normalization constant. Here, the eigenvalueβ is an arbitrary complex number.
It is easy to see that for any complex numberβ the state (2.2) reduces to the coherent state

|β〉 ≡ e−
|β|2

2
∑∞

n=0
βn√
n!
|n〉 in the limitη→ 0, as expected. However, it does not have a number

state limit for arbitraryβ since number states are eigenstates ofN with non-negative integer
eigenvalues. Further, we would like to have truncated states which arefinitesuperpositions of
the number states just as the binomial states are. With this in mind, we must chooseβ = √ηM,
whereM is a non-negative integer. In this case it is easy to see that the coefficientsCn are
truncated

Cn =


0 when n > M(√
η

1− η
)n

M!

(M − n)!√n!
C0 when n 6 M.

(2.3)

Here the normalization constantC0(η,M) is obtained as

C0(η,M) =
[ M∑
n=0

(
η

1− η
)n

(M!)2

[(M − n)!] 2n!

]− 1
2

= λM√
M!LM(−λ2)

(2.4)

whereλ ≡ √(1− η)/η andLM(x) is the Laguerre polynomial [6]

LM(x) =
M∑
n=0

1

n!

(
M

M − n
)
(−1)nxn. (2.5)

Inserting equations (2.3) and (2.4) into (2.1), we obtain the desired solution‖η, (β = √ηM)〉 ≡
‖η,M〉

‖η,M〉 = 1√
M!LM(−λ2)

M∑
n=0

λM−n
M!

(M − n)!√n!
|n〉 (2.6)

which is afinite linear superposition of number states.
We now consider the limiting cases of the above state (2.6) as number and coherent states.

First consider the limitη → 1. From the number-state expansion equation (2.6), it follows
that

Cn = λM−nM!√
M!n!(M − n)! −→ δM,n (2.7)

namely,‖η,M〉 → |M〉. Then, in the different limitη→ 0,M →∞ with
√
ηM = α a real

constant, we have

M!

(M − n)! → Mn λ−nMn→ αn C0→ exp(−α2/2) (2.8)

and therefore equation (2.6) reduces to the coherent state|α〉.
The above discussion shows that the state‖η,M〉 may be considered as an intermediate

state which interpolates between a number state and a coherent state.
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2.2. Connection with photon-added coherent states

The state (2.6) can be written in more elegant form. By making use of|n〉 = a†n√
n!
|0〉, we can

write equation (2.6) as

‖η,M〉 = 1√
M!LM(−λ2)

[ M∑
n=0

(
M

n

)
(a†)nλM−n

]
|0〉 = 1√

M!LM(−λ2)
(a† + λ)M |0〉 (2.9)

where we have used the binomial formula.
Furthermore, thanks to the equation (realλ in our case)

D(−λ)a†D(λ) = a† + λ (2.10)

whereD(λ) is the displacement operator

D(λ) = exp[λ(a†− a)] (2.11)

we can rewrite equation (2.9) in the form

‖η,M〉 = 1√
M!LM(−λ2)

D(−λ)a†MD(λ)|0〉

= 1√
M!LM(−λ2)

D(−λ)a†M |λ〉

≡ D(−λ)|λ,M〉 (2.12)

where|λ〉 = D(λ)|0〉 is a coherent state and

|λ,M〉 ≡ 1√
M!LM(−λ2)

a†M |λ〉 (2.13)

is a so-calledphoton-added coherent stateorexcited coherent state[5]. So from equation (2.13)
we conclude that our new intermediate number–coherent states aredisplaced excited coherent
states.

However, we would like to point out that our states are very different from the photon-
added coherent states. The photon-added states are aninfinite superposition of number states
fromM to infinity, while our states are afinitesuperposition of number states from 0 toM.

3. Nonclassical properties

In this section we shall investigate the statistical and squeezing properties of‖η,M〉, with
special emphasis on the comparison with those of the BS.

3.1. Photon statistics

The easily derived relation

ak‖η,M〉 =
[
M(M − 1) . . . (M − k + 1)LM−k(−λ2)

LM(−λ2)

]1/2

‖η,M − k〉 (3.1)

for k 6 M andak‖η,M〉 = 0 for k > M, gives the mean value of〈N〉 and〈N2〉

〈N〉 = MLM−1(−λ2)

LM(−λ2)
(3.2)

〈N2〉 = M(M − 1)LM−2(−λ2) +MLM−1(−λ2)

LM(−λ2)
(3.3)
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Figure 1. Mandel’sQ-parameter forM = 2, 50, 100.

and MandelQ-parameter [7]

Q(η,M) = 〈N
2〉 − 〈N〉2
〈N〉 − 1= (M − 1)

LM−2(−λ2)

LM−1(−λ2)
−MLM−1(−λ2)

LM(−λ2)
. (3.4)

If Q(η,M) < 0 (resp.Q(η,M) > 0), the field in the state‖η,M〉 is sub-Poissonian (resp.
super-Poissonian).Q(η,M) = 0 corresponds to Poissonian statistics.

For a fixedM, there are two extreme cases:η = 0 (orλ = ∞) andη = 1 (orλ = 0). It
is easy to see that

Q(η,M) −→
{
−1 λ = 0

0 λ→∞ (3.5)

in agreement with theQ-parameter values for number states and the vacuum state. Here we
have used the factLM(0) = 1 andLm(x)/Ln(x)→ 0 form < n andx →∞.

Figure 1 is a plot ofQ(η,M) with respect toη for M = 2, 50, 100. TheQ-parameter of
the BS is also presented in the figure (Q = −η for anyM). From the figure we observe that
the field in‖η,M〉 is sub-Poissonianexcept for the caseη = 0.

We say that a field is antibunched if the second-order correlation functiong(2)(0) =
〈a†a†aa〉/〈a†a〉2 < 1 [8]. In fact, the occurrence of antibunching effects and sub-Poissonian
statistics coincides for single-mode, time-independent fields such as the state‖η,M〉 of this
paper. So the field‖η,M〉 is antibunched except at the pointη = 0.

3.2. Squeezing properties

Define two quadraturesx (coordinate) andp (momentum)

x = 1√
2
(a + a†) p = 1√

2i
(a − a†). (3.6)

Then we can easily obtain their variances(1x)2 ≡ 〈x2〉 − 〈x〉2 and(1p)2 ≡ 〈p2〉 − 〈p〉2

(1x)2 = 1

2
+
MLM−1(−λ2)

LM(−λ2)
+
λ2L

(2)
M−2(−λ2)

LM(−λ2)
− 2

[
λL

(1)
M−1(−λ2)

LM(−λ2)

]2

(3.7)

(1p)2 = 1

2
+
MLM−1(−λ2)

LM(−λ2)
− λ

2L
(2)
M−2(−λ2)

LM(−λ2)
(3.8)

whereL(k)m (x) is the associated Laguerre polynomial defined by [6]

L(k)m (x) =
m∑
n=0

(m + k)!

(m− n)!n!(k + n)!
(−x)n (k > −1). (3.9)
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Figure 2. Variance(1x)2 of ‖η,M〉 as a function ofη for M = 2, 20, 50 and 200.

If (1x)2 < 1
2 (or (1p)2 < 1

2), we say the state issqueezedin the quadraturex (or p).
Figure 2 is a plot showing how the variance(1x)2 depends on the parametersη andM.

Whenη = 0, (1x)2 = 1
2 since the state is just the vacuum state and in this case the field is

not squeezed. Then, asη increases the field becomes squeezed until maximum squeezing is
reached; then the squeezing decreases until it disappears at a pointη0 depending onM. We
note thatη0 < 1 whenM > 0 since(1x2) = M + 1

2 >
1
2 whenη→ 1.

We also observe from figure 2 that the largerM, the stronger the squeezing, and the wider
the squeezing range.

It is known that the optimal signal-to-quantum noise ratio for an arbitrary quantum state

ρ = 〈x〉
2

(1x)2
(3.10)

has the value 4Ns(Ns + 1) which is attainable for the usual coherent squeezed state [9]. For a
coherent state the maximal ratio is 4Ns , whereNs is the mean value of the number operator
N for the quantum state.

For the intermediate number–coherent state‖η,M〉, the signal-to-quantum noise ratios
for different parametersη andM are shown in figure 3. The ratio forη = 0 andη = 1, which
correspond to the vacuum state and number state, respectively, is zero. For otherη, we find
from figure 3(a) that the largerM, the larger the ratio. Figure 3(b) gives plots of 4〈N〉(〈N〉+1)
(〈N〉 is given by equation (3.2)), 4〈N〉 and the ratio for the state‖η,M〉 with M = 10. We
find that:

(1) the ratio for‖η,M〉 is always smaller than the value 4〈N〉(〈N〉 + 1), which is in accord
with the general result [9];

(2) for some values ofη the ratio is larger than 4〈N〉. We observe that the states with ratio
larger than 4〈N〉 correspond to squeezed states (see figure 2).

4. Quasiprobability distributions

Quasiprobability distributions [10] in the coherent state basis turn out to be useful measures for
studying the nonclassical features of radiation fields. In this section we study theQ-function
(also called the Husimi function) and the Wigner function of the state‖η,M〉.
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Figure 3. The signal-to-quantum noise ratio for‖η,M〉. (a) The ratio for differentM;
(b) comparison ofρ, 4〈N〉(〈N〉 + 1) and 4〈N〉 for M = 10.

One can prove that (see appendix A), if two states|ψ〉α and|ψ〉 satisfy|ψ〉α = D(α)|ψ〉,
whereD(α) = eαa

†−α∗a is the displacement operator, theQ- and Wigner functions of|ψ〉α are
simply a displacement of those of|ψ〉, namely

Q(β)|ψ〉α = Q(β − α)|ψ〉 W(β)|ψ〉α = W(β − α)|ψ〉. (4.1)

So theQ-function and the Wigner function of the state‖η,M〉 are easily obtained from those
of the photon-added coherent states given in [5]

Q(β) = |〈β‖η,M〉|2 = e−|β|
2|λ + β|2M

M!LM(−λ2)
(4.2)

W(β) = 2(−1)MLM(|2β + λ|2)
πLM(−λ2)

exp(−2|β|2). (4.3)

TheQ-function equation (4.2) has a 2M-fold zero at the positionβ = −λ, which signals
the nonclassical behaviour†. These zeros are related to the negative parts of the Wigner
function, since theQ-function can be defined as a smoothed Wigner function. Figure 4 gives
plots of the Wigner function of‖η,M〉 for M = 3 and differentη. One can clearly see the
negative parts, except for the caseη = 0 which corresponds to the vacuum state whose Wigner
function is simply a Gaussian centred at the origin. Asη increases from 0, the Gaussian
distribution continuously deforms to the Wigner function of the number state|3〉.

We can also study squeezing properties from theQ-function by examining the deformation
of its contours. Figure 5 is the contour plot ofQ-functions forM = 10 and differentη. We see
that, when we increaseη, the contour is squeezed in thex direction until a maximum squeezing
is reached. Then the contour deforms to the shape of a banana, which occupies a wider range
in thex direction and the squeezing is reduced. Finally, we obtain a circular contour for larger
η corresponding to no squeezing (cf figure 2).

5. Generation of intermediate states

The main difference between the intermediate states described herein and photon-added
coherent states is that the former are afinitesuperposition of number states. This suggests the
possibility of an experiment to produce these states using the method proposed in [11].

† We thank the referee for this remark.
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Figure 4. Wigner function of‖η,M〉 for M = 3 andη = 0.1, 0.4, 0.7 and 1.α = x + iy.

We can also generate the state‖η,M〉 by using the interaction of a photon and a two-level
atom with an external classical driving fieldA in a cavity. In the rotating wave approximation,
the Hamiltonian (h̄ = 1) is

H = H0 + V
H0 = ωN +A(a† + a) + 1

2ω0σ3

V = g(a†σ− + aσ+)

(5.1)

whereσ3 = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g| andσ− = |g〉〈e| are atomic operators,g is the one-
photon coupling constant,ω0 andω are the atomic transition frequency and cavity resonant
mode frequency, respectively, and we take the driving fieldA to be real and constant. The
interaction Hamiltonian is

HI(t) = U−1
0 (t)V U0(t) U0(t) = e−iH0t = e−i/2ωtN−iAt(a†+a)e−iω0tσ3. (5.2)

Using the following relation (see appendix B):

U−1
0 (t)aU0(t) = e−iωtD(−A/ω)aD(A/ω) (5.3)

whereD(A/ω) is the displacement operator, we have

HI(t) = gD(−A/ω)(ei(ω−ω0)t a†σ− + e−i(ω−ω0)t aσ+)D(A/ω). (5.4)

Now we consider the on-resonance case,ω = ω0. Then the interaction Hamiltonian is time-
independent

HI = gD(−A/ω)(a†σ− + aσ+)D(A/ω) (5.5)

and therefore its time evolution operator is

UI (t) = e−iHI t = D(−A/ω)e−igt (a†σ−+aσ+)D(A/ω). (5.6)

Suppose that the field is initially prepared in the vacuum state|0〉 and the atom in the excited
state|e〉; namely, att = 0, the system is in the state|0〉 ⊗ |e〉. At time t we have

UI (t)|0〉 ⊗ |e〉 = D(−A/ω)e−igt (a†σ−+aσ+)D(A/ω)|0〉 ⊗ |e〉. (5.7)
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Figure 5. Contours of theQ-function of‖η,M〉. In all casesM = 10. α = x + iy.

Whengt � 1, we have

UI (t)|0〉 ⊗ |e〉 = |0〉 ⊗ |e〉 − igt [D(−A/ω)a†D(A/ω)|0〉] ⊗ |g〉. (5.8)

If the atom is detected in the ground state|g〉, the field is reduced to the state‖η, 1〉 with
η = ω2/(A2 + ω2).

The state‖η,M〉 (M > 1) can be generated by a multiphoton generalization of the
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Hamiltonian (5.1), namely,V = g(a†Mσ− + aMσ+).
Note that the parameterA depends on the external driving field and is a tunable parameter.

In particular, for large enoughM, we can control the output state to be either a number or a
coherent state by tuning the parameterA.

Finally, we may infer the presence of these new intermediate states to first order in an
idealized nonlinear optics experiment. Consider a nonlinear Mach–Zehnder interferometer
with a Kerr medium in one arm. The output state is the displaced Kerr state [12]

D(ξ)UK(γ )|λ〉 UK(γ ) ≡ exp

(
i

2
γ a†2a2

)
(5.9)

whereD(ξ) is the displacement operator andγ ≡ 2χL/v,L is the length of the Kerr medium,
v the appropriate phase velocity inside the medium andχ the third-order susceptibility. When
ξ = −λ, andγ is small enough, the above states can be approximated as

|0〉 + i

2
γ λ2‖λ, 2〉 (5.10)

showing the presence of the state|η, 2〉 in first order. In general, if we use a(2S + 1)th-order
nonlinear Kerr medium modelled in the interaction picture by [13]

HKerr = h̄γS

(S + 1)!
(a†)S+1a(S+1) = h̄γS

(S + 1)!
N(N − 1) . . . (N − S) (5.11)

we can find‖η,M〉 whenγS is small enough.

6. Interaction with a two-level atomic system

In this section we turn to the interaction of the state‖η,M〉 with a simple two-level system in
the framework of the two-photon JC model [14, 15] described by the following Hamiltonian
(h̄ = 1):

H = ωa†a + 1
2ω0σ3 + g(a†2σ− + a2σ+) = H0 + V (6.1)

with

H0 = ωa†a + 1
2ω0σ3 V = g(a†2σ− + a2σ+).

The notation is as in equation (5.1), but nowg is the two-photon coupling constant for transition
|g〉 
 |e〉. Suppose that, at the initial timet = 0, atom and field are decoupled and the atom
is initially in the excited state|e〉, while the field is in the intermediate number–coherent state
‖η,M〉. Then the combined atom–field wavefunction at timet is obtained as

|ψI (t)〉 =
M∑
n=0

Cn(η,M)[cos(δnt)− i
1

2δ
sin(δnt)]e

i 12 t |e〉 ⊗ |n〉

−i
M∑
n=0

�n

δn
Cn(η,M) sin(δnt)e

−i 12 t |g〉 ⊗ |n + 2〉 (6.2)

where

�n = g
√
(n + 1)(n + 2) δn =

√
12

4
+�2

n 1 = ω0 − 2ω. (6.3)

For simplicity, we only consider the on-resonance interaction case1 = 0 as in [18] whereupon
equation (6.2) simplifies to

|ψI (t)〉 =
M∑
n=0

Cn(η,M) cos(�nt)|e〉 ⊗ |n〉 − i
M∑
n=0

Cn(η,M) sin(�nt)|g〉 ⊗ |n + 2〉. (6.4)

We now discuss some quantum characteristics of the system arising from the equation (6.4).
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Figure 6. Atomic population inversion as a function of the scaled timeτ . (a) M = 4, η = 0.999;
(b) M = 70, η = 0.8; (c) M = 70, η = 0.1; (d) M = 200, η = 0.001.

6.1. Atomic population inversion

Atomic population inversion is an important atomic observable in the JC model and is defined
as the difference between the probabilities of finding the atom in the excited state and in the
ground state. From equation (6.4), the atomic population inversion is obtained as

W(t) = 〈σ3〉 =
M∑
n=0

|Cn(η,M)|2 cos(2�nt). (6.5)

Figure 6 gives the inversion versus scaled timeτ ≡ gt for differentM andη. From figure 6,
we observe that the atomic population inversion exhibits the conventional Rabi oscillation for
theM-number state limit (η→ 1). In fact, in the limitη→ 1, equation (6.5) is simplified as

W(t) = cos(2�Mt) (6.6)

with frequency 2�M = 2g[(M + 1)(M + 2)]1/2 (≈2Mg for high enough〈N〉, see figure 6(a)).
In the coherent state limit we observe the collapse–revival phenomenon, as we expect, with
a revival timetcs which can be estimated asπ/g [18] for high enough〈N〉 (that is,revival
frequency�cs ≡ 2π/tcs ≈ 2g) (figure 6(d)). For the general intermediate case (figures 6(b)
and (c)), remnants of both behaviour are seen; namely, an oscillation of frequency�M
modulated by the frequency�cs with modulated amplitude dependent on the parameterη

andM.

6.2. Field entropy

We now consider the cavity field observables, beginning with entropy which is a measure of
theamount of chaosor lack of information about a system [16]. The entropyS of a quantum
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mechanical system is defined as [17,18]

S = −Tr(ρ ln(ρ))

whereρ is the density operator of the quantum system and the Boltzmann constantk is equal
to unity. For a pure state,S = 0; otherwiseS > 0, and it increases with increasing number of
microstates with decreasing statistical weight.

In this section we study the time evolution of the field entropy in our system. Barnett and
Phoenix [17] have proved that the field entropySf equals the atomic entropySa if the total
initial state is a pure state. From equation (6.4) the atomic reduced density operatorρa can be
easily obtained as

ρa ≡ Trf (ρ) = ρ11|g〉〈g| + ρ12|g〉〈e| + ρ21|e〉〈g| + ρ22|e〉〈e| (6.7)

where

ρ11 =
M∑
n=0

|Cn(η,M)|2 sin2(�nt)

ρ22 =
M∑
n=0

|Cn(η,M)|2 cos2(�nt)

ρ12 = ρ∗21 =
M−2∑
n=0

Cn+2(η,M)Cn(η,M) cos(�n+2t) sin(�nt).

(6.8)

Then the field and atomic entropySa = −Tra(ρa ln(ρa)) can be expressed as

Sf = Sa = −π+ ln(π+)− π− ln(π−) (6.9)

whereπ± are eigenvalues of the atomic reduced field density operatorρa

π± = 1
2

(
1±

√
(ρ22− ρ11)2 + 4|ρ12|2

)
. (6.10)

The field entropySf as a function ofτ is presented in figure 7. It is clear thatSf is a periodic
function of time and it exhibits the conventional oscillation for theM-number state limit. As
in the case of coherent initial states, the field entropy during the time evolution is dynamically
reduced to zero at revival timetR which means the cavity field can be periodically found in
pure states, and reaches a maximum attR/2 and falls quickly to a minimum atτ = π/4, 3π/4.
Furthermore, for the general intermediate case, the field entropy has more minima as shown
in figures 7(b) and (c) due to the frequency modulation.

6.3.Q-function

The quasiprobability distributionQ-function is defined as [19]:

Q(β) = 1

π
〈β|ρf |β〉

whereρf = Tra(ρ) is the field reduced density operator

ρf =
M∑

m,n=0

Cm(η,M)Cn(η,M)[cos(�mt) cos(�nt)|n〉〈m|

+ sin(�mt) sin(�nt)|n + 2〉〈m + 2|] (6.11)

and|β〉 is the coherent state. So theQ-function of the cavity field is

Q(β) = e−|β|
2

π

(∣∣∣∣ M∑
n=0

β∗n√
n!
Cn(η,M) cos(�nt)

∣∣∣∣2 +

∣∣∣∣ M∑
n=0

(β∗)n+2

√
(n + 2)!

Cn(η,M) sin(�nt)

∣∣∣∣2).
(6.12)
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Figure 7. Entropy of the field as a function of scaled timeτ . (a) M = 4 andη = 0.9999 (the
initial field state is the number state|4〉); (b) M = 70 andη = 0.8; (c) M = 70 andη = 0.1;
(d) M = 200 andη = 0.005.

In figure 8 we give contour plots of theQ-function at different timesτ for η = 0.1, 0.8.
At time τ = 0, theQ-function has only a single peak and the field is in the pure quantum state
|η,M〉 (cf figure 5). With the development of time, theQ-function begins to separate into two
peaks. The smallerη, the faster the seperation. At timeτ = π/2, theQ-function exhibits the
most separation and the field is in a mixed state since the entropy reaches its maximum. Then
two peaks begins to merge together and finally combine in a single peak at timeτ = π , where
the field is in a pure state with vanishing entropy.

6.4. Photon number distribution

The photon number distributionPn(t) of the field described by the reduced density matrixρf
is given by

Pn(t) = 〈n|ρf |n〉. (6.13)

Inserting equation (6.11) into (6.13) we find the photon number distribution at timet

Pn(t) = |Cn(η,M)|2 cos2(�nt) + |Cn−2(η,M)|2 sin2(�n−2t). (6.14)

Figure 9 shows the behaviour of the photon number distribution at timesτ = 0, π/4,π/2,
3π/4 andπ . From these figures we can observe that the photon number distribution exhibits
strong oscillation at timeτ = π/4 and 3/4π for the intermediate states. In fact, at those
times, the field is a superposition of two components (see figure 8) and its entropy decreases
rapidly to a minimum (see figure 7). Partial interference between two component results in
strong oscillation of the photon number distribution. However, the oscillation is notperfect
(see below). Nevertheless, it is perfect at the slightly earlier timeτ = π/4− ξ (see the dashed
curves in figures 9(a) and (b)).
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Figure 8. Contour plots of theQ-function of the field atτ = 0, π/4, π/2, 3π/4 andπ . Here we
chooseη = 0.1, 0.8.

This effect is not hard to understand. In fact, atτ = π/4, we have the following
approximate result (see appendix C):

Pn(t) =
[
1 +

(1− η)2n(n− 1)

η2(M − n + 2)2(M − n + 1)2

]
|Cn(η,M)|2 sin2

[(
n− 1

2

)
τ

]
τ= π

4

(6.15)

for the high enough〈N〉 case. Equation (6.15) is a strongly oscillating function which explains
the large oscillations of the photon number distribution. However, due to the additional term
τ/2= π/8, the function sin2[(n− 1

2)τ ]τ=π/4 cannot be zero for any integern; in other words,
the oscillation is not perfect. However,Pn(t) is zero at the slightly earlier timeτ = π/4− ξ ,
whereξ is chosen to make(n− 1

2)τ a multiple ofπ .
From figure 9(c) we also observe that the photon number distribution atτ = π is simply

a displacement by 2 from that at the timeτ = 0. For the large photon number case, this fact
can be proved analytically. Using equation (C.4) in appendix C, we have

sin(�n−2t) ≈ sin(nπ − π/2) = (−1)n+1

cos(�nt) ≈ cos[(n + 1)π + π/2] = 0.

So the photon number distribution (6.14) atτ = π becomes

Pn(π/g) = |Cn−2(η,M)|2 ≡ Pn−2(0). (6.16)

In the same way we find that, atτ = π/2, the photon number distribution is

Pn(π/2g) = 1
2(|Cn(η,M)|2 + |Cn−2(η,M)|2) = 1

2(Pn(0) + Pn(π/g)) (6.17)
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Figure 9. Number distribution of the photon field at different times:τ = 0, π/4, π/2, 3π/4 and
π for η = 0.1, 0.8. In (a) and (b) we also present the distribution at a slightly earlier timeτ − ξ ,
whereξ is chosen as1

140 and 1
180 for η = 0.1 andη = 0.8, respectively.

namely, theaverageof the photon number distributions atτ = 0 andτ = π . In figure 9(c)
this fact can be clearly observed.

7. Conclusion

In this paper we have described new states‖η,M〉 which interpolate between number and
coherent states and have investigated their various properties. Unlike photon-added coherent
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states, to which they are related, these states are afinite superposition of number states. We
also analysed the limiting casesη → 1 andη → 0,M → ∞ corresponding to number and
coherent states, respectively. Salient statistical properties of‖η,M〉 such as the sub-Poissonian
distribution, the anti-bunching effect and the squeezing effects were investigated for a wide
range of parameters. The nonclassical features of thse states for certain parameter ranges were
demonstrated in terms of the quasiprobability distributions, theQ- and Wigner functions.
We also proposed an experiment to generate these states, inferring their presence in certain
nonlinear systems.

We then considered the interaction of these interpolating number–coherent states with
a two-level atomic system, exemplified by the two-photon JC model. We first studied the
dynamics of atomic population inversion. On an intuitive level, one expects that the response
of the atomic system will vary between the Rabi oscillation typical of an initial number state,
and the collapse–revival mode for an initial coherent state; and indeed this is what one obtains.
We found that it exhibited the conventional Rabi oscillation for theM-number state limit with
frequency�M (≈2Mg) and the collapse–revival phenomenon for the coherent state limit with
revival frequency�cs ≈ 2g. For the general intermediate case, remnants of both behaviour
were seen; namely, an oscillation of frequency�M modulated by the frequency�cs with
modulated amplitude dependent on the parameterη andM.

We further investigated the field observables, the entropy,Q-function and photon number
distribution. It is of interest that the photon number distribution exhibits strong oscillation at
τ = π/4, 3π/4. At those times, the field entropy falls rapidly to a minimum and theQ-function
separates into two peaks, which means that the field is a superposition of almost pure states
and interference between components of the superposition state leads to strong oscillation of
the photon number distribution. An approximate analytical solution is presented to explain
this result.

The remarkable properties of these intermediate number–coherent states provide a useful
tool for theoretical investigation of model systems; their generation by nonlinear systems
tempts us to believe that the states found in this paper may play an important role in quantum
optics.
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Appendix A. Displaced quasiprobability distributions

For theQ-function, we prove equation (4.1) as follows:

Q(β)|ψ〉α = |〈β|D(α)|ψ〉|2 = |〈0|D(−β)D(α)|ψ〉|2
= |〈β − α|ψ〉|2 = Q(β − α)|ψ〉 (A.1)

where we have used the relation

D(δ)D(γ ) = D(δ + γ )e
1
2 (δγ

∗−γ δ∗) = D(δ + γ )eiIm (δγ ∗) (A.2)

for arbitrary complex numbersδ and γ . From the following definition of the Wigner
function [20]:

W(β) = 2

π

∞∑
k=0

〈β, k|ρ|β, k〉 (A.3)
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where|β, k〉 ≡ D(β)|k〉 = eβa
†−β∗a|k〉 is the displaced number state (|k〉 is the number state)

andρ = |η,M〉〈η,M| is the density matrix of the states considered, we can prove the second
relation in equation (4.1) in the same way as in theQ-function case.

Appendix B. Proof of formula equation (5.3)

In this appendix we give a proof of equation (5.3). We use the following formula:

e−FGeF =
∞∑
n=0

(−1)n

n!
[F, [F, . . . , [F︸ ︷︷ ︸

n copies

,G] . . .]] . (B.1)

For the case in hand

F = −iωtN − itA(a† + a) G = a. (B.2)

It is easy to see that

[F,G] = iωta + iAt

[F, [F,G]] = iωt [F,G]
[F, [F, [F,G]]] = iωt [F, [F,G]] = (iωt)2[F,G]

· · ·
[F, [F, . . . , [F︸ ︷︷ ︸

n copies

,G] . . .]] = (iωt)n[F,G]

= (iωt)na + (iωt)nA/ω = (iωt)nD(−A/ω)aD(A/ω)

(B.3)

whereD(A/ω) is the displaced operator. Substituting equation (B.3) into equation (B.1) we
obtain the formula equation (5.3).

Appendix C. Photon number distribution for large photon number

In this appendix we present an analytical treatment of the photon number distribution in the
large photon number regime. The photon number distribution of the two-photon JC model
with initial state|e〉 ⊗∑n Cn|n〉 can be obtained as

Pn(t) = |Cn|2 cos2
(√
(n + 1)(n + 2)τ

)
+ |Cn−2|2 sin2

(√
(n− 1)nτ

)
(C.1)

whereτ = gt is the scaled time as before.
Here we only consider an initial field state which is narrower than that of a coherent state.

For a distribution{|Cn|2} we can calculate the variance as

(n− n̄)2 = 〈N2〉 − 〈N〉2. (C.2)

For the coherent state|α〉, we have(n− n̄)2 = n̄. So for highly excited coherent states where
n̄ → ∞, we haven ∼ n̄. In the following we only consider a distribution{|Cn|2} narrower
than the Poisson distribution, namely

(n− n̄)2 6 n̄. (C.3)

So for large enough̄n we also haven ∼ n̄. In this case, we have√
(n + 1)(n + 2) ≈

√
n2 + 3n = n

√
1 +

3

n
= n +

3

2
=
(
n− 1

2

)
+ 2√

(n− 1)n =
√
n2 − n = n

√
1− 1

n
≈ n− 1

2
.

(C.4)
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Futhermore, whenτ = π/4 we have

cos2
(√
(n + 1)(n + 2)τ

)
= cos2

[(
n− 1

2

)
τ +

π

2

]
τ= π

4

= sin2

[(
n− 1

2

)
τ

]
τ= π

4

. (C.5)

Substituting equation (C.5) into equation (C.1) we obtain the approximate photon number
distribution atτ = π/4

Pn(t) = (|Cn|2 + |Cn−2|2) sin2[(n− 1
2)τ ]τ= π

4
. (C.6)

From equation (C.6) we find that, for the initial field whose photon distribution is narrower than
a Poisson distribution, the photon number distribution atτ = π/4 exhibits strong oscillation.
However,Pn(π/4) cannot be zero for anyn due to the termτ/2 = π/8 and the oscillation is
not perfect. Nevertheless, the oscillation is perfect at a slightly earlier timeτ = π/4− ξ , as
indicated in [18] (for initial coherent state) and figures 9(a) and (b).

For coherent states we further have|Cn−2|2 ≈ |Cn|2. So the photon number distribution
is

Pn(t) = 2e−n̄
n̄n

n!
sin2

[(
n− 1

2

)
τ

]
τ= π

4

(C.7)

which is simply the result given in [18].
Now we turn to the analytical approximate result (6.15). For the intermediate state, we

can write the variance as

(n− n̄M)2 = 〈N〉M−1〈N〉M − 〈N〉2M + 〈N〉M (C.8)

wheren̄M ≡ 〈N〉M ≡ 〈η,M|N |η,M〉. In general, we have〈N〉M−1 6 〈N〉M 6 M. For
large enough̄nM , or M, we have〈N〉M−1 ≈ 〈N〉M and therefore(n − n̄M)2 ∼ n̄M which
leads ton ∼ n̄M . So the result (C.6) is valid for the intermediate state case. Furthermore, the
distribution|Cn(η,M)|2 and|Cn−2(η,M)|2 are related by

|Cn−2(η,M)|2 = (1− η)2n(n− 1)

η2(M − n + 2)2(M − n + 1)2
|Cn(η,M)|2. (C.9)

Substituting equation (C.9) into (C.6), we finally obtain (6.15).
Equation (C.4) can also be used to explain the behaviour of the photon number distribution

at τ = π/2 andπ (see equations (6.16), (6.17) and figure 9).
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